This content is protected and may not be shared uploaded or distributed.

CEE123/223 Transportation Planning & Modeling 1

Miasma Beach

Project Overview

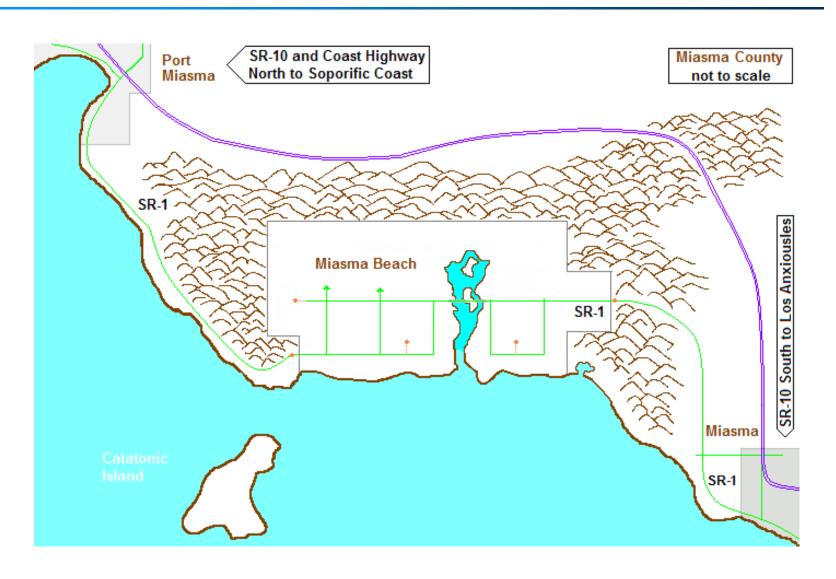
- 1. Miasma Beach: Regional Context
- 2. Miasma Beach: City Context
- 3. 2000 Miasma Beach Transportation Study
- 4. 2020 Miasma Beach Transportation Model
- 5. RFP: Tasks 1-7

Module Objective and Expected Outcomes:The Miasma Beach Transportation Model

- Objective: This module is an overview of the development of a travel forecasting model system for Miasma Beach.
- Expected Outcomes: At the end of this module, you will:
 - 1. Gain familiarity with the mythical town of Miasma Beach
 - 2. Understand the development of Miasma Beach with respect to land use and transportation, both locally and regionally
 - 3. Gain familiarity with the **Transportation Planning Process**
 - 4. Gain familiarity with the travel forecasting process
- Module Length: This module comprises approximately 15 slides and takes about 15 minutes.
- Copyright: This content in this and all other course modules is protected and may not be shared, uploaded, or distributed.

The Miasma Beach Transportation Model

Miasma Beach


"In every outthrust headland, in every curving beach, in every grain of sand there is the story of the earth."

Rachel Carson

The Miasma Beach Transportation Model Regional Context

- The County of Miasma is a coastal, agricultural-oriented, and primarily rural region that has just begun to see:
 - increased land development and population growth
 - Increased agricultural and maritime economic activity
 - an influx of tourist traffic to and through the region.
- The major city is Miasma, located to the southeast
- The coastal region comprises mountainous terrain linked by Pacific Coast Highway traversing the small city of Miasma Beach, heading north to Port Miasma.
- The primary regional transportation route is State Route 101, an inland freeway linking Miasma and Port Miasma, running north of the coastal Miasma Mountains.
- See Figure 1

The Miasma Beach Transportation Model Regional Context

The Miasma Beach Transportation Model The City of Miasma Beach

- Miasma Beach is located on Miasma Bay within a seaside valley of approximately 14 square miles.
- The area, encircled by the Miasma Mountains, is mainly low, flat, and fertile land, with the exception of residential areas in the foothills of Old Town and the eastern suburbs
- The Miasma Marsh wetlands consume 2 to 3 square miles in the central part of the basin.
- The southern border comprises wide beaches and an inlet to Miasma Marsh. The beach is bracketed by headlands to the west and the east.
- A topographic map of the area is provided in Figure 2.
- A transportation network map is provided in Figure 3.

The Miasma Beach Transportation Model The City of Miasma Beach (2000)

The Miasma Beach Transportation Model Prior Transportation Model Application (2000)

- Increased growth has lead to increased congestion, diminished air quality, and traffic safety problems being identified.
- A regional transportation study was conducted in 2000 to examine anticipated growth impacts over the next decade.
- The Miasma Beach Transportation Model was developed as a trip-based Four Step Model using TransCAD.
- TransCAD is a full-featured Geographic Information System (GIS) designed specifically to manage, analyze, and display data related to transportation systems. It has a comprehensive set of transportation analysis models.
- The model depicts both the Transportation and the Activity Systems as simplified abstractions of the real world.

The Miasma Beach Transportation Model Prior Transportation Model Application (2000)

The Miasma Beach Transportation Model Components:

- Transportation System: network coding (field studies, aerial photos)
- Activity System: zone data (US Census, Employment Surveys)
- Trip Generation: production and attraction models for 3 trip purposes
- Minimum Paths: using free-flow automobile travel times
- Trip Distribution: doubly-constrained gravity model with F-factors
- Mode Choice: no mode choice model was estimated
- Time-of-Day: AM-, PM-, and Off-peak periods
- Trip Assignment: equilibrium assignment
- Feedback: No feedback to prior steps in the current model system
- Air Quality: The regional is compliant
- The model was validated using 2000 traffic counts. Modeled volumes on screen lines and key links were within 5 percent of observed counts. Mean travel times by trip purpose were within 10 percent of observed values.

The Miasma Beach Transportation Model Prior Transportation Model Application (2000)

- The results of the modeling exercise included:
 - Managed land use development according to City zoning
 - Transportation system development based on modeling and evaluation of several future alternatives
 - Continued tracking of economic growth, tourist travel, and system performance
- The chosen transportation system alternative was planned and programmed for completion by the year 2020
- Next the model update was scheduled for the year 2020, corresponding to updates for US census, regional sociodemographic forecasts, and regional travel surveys.
- The corresponding network will serve as the starting point for the 2020 model update.

The Miasma Beach Transportation Model Transportation Model 2030 Tasks

- Task 1. Validate 2020 Base Network
- Task 2. Develop 2020 Base Network File and Skims
 - Network Development: First Interim Report (Task 1 and 2)
- Task 3. Trip Generation
- Task 4. Trip Distribution
- Task 5. Time-of-Day and Trip Assignment
 - Model Validation: Second Interim Report (Task 3-5)
- Task 6. Application of the Transportation Planning Process to define, model, and evaluate future transportation system alternatives for the 2030 horizon year.
 - Model Forecasts: No Build and 3 design alternatives
- Task 7. Final Report

Miasma Beach Transportation Model CEE123 Modeling and Reporting Process

- You are consultants to the City of Miasma Beach
- You will complete work tasks as individuals and as a team.
- Tasks 1 and 2, including Interim Report 1, is completed as a team. After review, the report will be updated and re-submitted with Report 2.
- Tasks 3 thru 5, including Interim Report 2, is completed as a team. After review, the report will be updated and re-submitted with the Final Report.
- Task 6 will be completed as a team but each member must complete an individual design alternative, including problem identification, alternative development and analysis, and a full cost effectiveness analysis.
- Task 7 will be a single team Final Report, incorporating the individual design alternative sections.

Summary: Miasma Beach Transportation Model

- The prior transportation study (2000) resulted in a Long Range Transportation Plan for 2020.
- The first objective is to update and validate the 2000 Miasma
 Beach Transportation model to reflect the new 2020 base year.
- The second objective is to develop future transportation alternatives to address growth impacts anticipated for the year 2030.
- The project has both individual and team components.

The Miasma Beach Transportation Model Modeling Overview

End of Module

© M.G.McNally

Department of Civil & Environmental Engineering

University of California, Irvine

Irvine, CA 92697

mmcnally@uci.edu

This content is protected and may not be shared uploaded or distributed.

CEE123/223 Version [April 2025] © mgm