CEE 123 Transport Systems 3: Planning & Forecasting

Spring 2025: Michael G. Mc Nally (mmcnally-at-uci-dot-edu) [15450]

Homework 7 -- Trip Table Adjustments [Due: Monday 2 June 2025]

The following problems deal with a hypothetical, 4-zone region (this data was used in the prior homework assignment). Table 1 summarizes activity system and **HBW** trip generation data (Ps and As) for 2020, and estimates of activity system variables for 2030. Use the Table 2 base Trip Distribution in all problems.

Table 1. Base and Future HBW Trips and Demographic Data Summary

Zone	P(i)	 BW A(j) '20		l(i) holds		i) irs		(i) rkers		(j) npl.	I(i) Inc.
20116	20	20	'20	'30	'20	'30	'20	'30	'20	'30	both
1 2 3 4	825 775 910 865	710 800 970 895	321 402 330 375	330 470 300 420	447 360 396 450	460 420 375 465	390 345 582 399	395 480 570 450	300 360 600 456	300 450 690 455	Low Med High Med
Tot	3375	3375	1428	1520	1653	1720	1716	1895	1716	1895	N/A

Table 2. Base Travel Time and Trip Distribution Matrix

From\To	1	2	3	4	From\To	1	2	3	4	P(i)
1 2 3	16 13	7 20	20 2	12 9	1 2 3	100 205	400 60	375 50 225	225 420	825 775 910
4	18 	12 	9	3 	4 A(j)			320 970		865 3375

Problem 5. PA to OD by Time-of-Day (10 points)

Using the base 24-hour Home-based Work (HBW) person-trip production-attraction P-A matrix in Table 2 and the conversion factors in Table 5, **develop** the corresponding (a) AM-peak period, (b) PM-peak period, and (c) off-peak period origin-destination O-D matrices for HBW person-trips. Note: Show sample calculations.

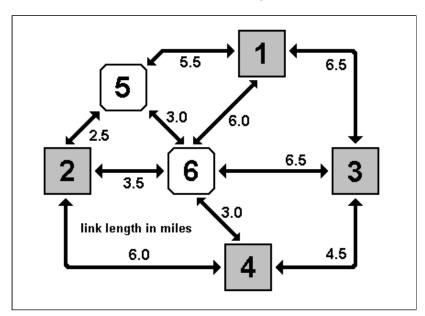
Table 5. Temporal Distribution of Trips by Purpose

	H	BW	H	ВО	N	HB
Analysis Period	P-A	A-P	P-A	A-P	P-A	A-P
 AM-peak (7-9:00am) PM-peak (4-7:00pm) Off-peak (other) 	0.03	0.00 0.30 0.20	0.09	0.02 0.15 0.33	0.04 0.12 0.34	0.12

Problem 6. Vehicle Occupancy (5 points)

Convert the AM-peak HBW O-D matrix of person-trips (see problem 5) to vehicle trips, using Table 6 parameters. **Express** as an O-D matrix.

Table 6. Base Year Vehicle Occupancy by Trip Purpose


Туре	Trip purpose	Average Vehicle Occupancy
1. HBW 2. HBO	Home-based Work Home-based Other	1.10 persons/vehicle 1.33 persons/vehicle

3. NHB Non-home-based

1.25 persons/vehicle

Problem 7. Identify Paths (10 points)

The following network represents the area in question, with node numbers 5 and 6 representing major network interchanges where no activities occur (these are not centroids). Links are labeled with link length (in miles). Assume for the AM-peak period average auto speeds of 30 mph.

Apply Dijkstra's Algorithm to find the minimum path tree for TAZ 1 (row 1 of the skim table). Inspect the network and apply symmetry to complete the skim table. **Verify** this skim table with that in Table 2. **Find** and **tabulate** predecessor nodes to identify the minimum paths for trip assignment.

Last Updated: 16 May 2025