CEE 123 Transport Systems 3: Planning & Forecasting

Spring 2025: Michael G. McNally (mmcnally-at-uci-dot-edu) [15450]

Homework #6 -- Trip Distribution Modeling [SOLUTIONS]

The following problems deal with a hypothetical, 4-zone region (this data will be used in a subsequent trip assignment homework). Table 1 summarizes surveyed activity system and trip generation data (productions and attractions) for 2020 and estimates of activity system variables for 2030.

Tabi	le 1.	Base	and Fu	uture	НВW Тı 	rips a	ind Der	nograp	hic Da	ata Su	mmary
HBW P(i) A(j Zone '20 '2				H(i) eholds	C Ca	(i) ars		(i) rkers		(j) npl.	I(i) Inc.
2011e			' 20	' 30	' 20	'30	' 20	'30	' 20	'30	both
1	825	710	321	330	447	460	390	395	300	300	Low
2 3	775 910	800 970	402 330	470 300	360 396	420 375	345 582	480 570	360 600	450 690	Med High
4	865	895	375	420	450	465	399	450	456	455	Med
Tot	3375	3375	1428	1520	1653	1720	1716	1895	1716	1895	N/A

Problem 1. Trip Generation [10 points]

Household **HBW** trip production and attraction models for the region as a whole have been estimated and found to be significant.

 $P_i = 34.8 + 0.59 HH_i + 0.80 C_i + 0.63 W_i$

 $A_i = 485.1 + 0.84 E_i$

- a. Using the **base data**, apply the models and estimate a goodness-of-fit measure for each model. For example, compute the root mean square error, RMSE=sqrt[$(1/n)\Sigma(est-obs)^2$]. Comment on the fit.
- b. Use the demographic **forecasts** provided to predict and tabulate future trip ends for the production and attraction models. These estimates will be used in the trip distribution forecast.

Solution:

Analysis is best accomplished via a spreadsheet.

- a. Validation is summarized below. RMS Error provides a suitable Goodness-of-Fit measure supplement the percent or relative errors which are tabulated under "Deviations [100*(est-obs)/obs]". These errors are very small. Computed RMSE for productions and attractions are 2.6 trips and 22.2 trips, respectively.
- b. Forecasts are computed using the production and attraction models provided and are summarized below. Forecasted attractions A(j)* are normalized to forecasted productions. Final forecasts are rounded to the nearest trip. These forecasts will be used in Problem 3.

CEE 123 Transportation Systems III: HW#7 Trip Distribution [S&M2] SOLUTIONS

	HBW Tri	p Ends	House	holds	Ca	rs	Wor	kers	Emplo	yment	Income
	P(i)	A(j)	HH(i)		C(i)		W(i)		E(j)		l(i)
TAZ	2010	2010	2010	2020	2010	2020	2010	2020	2010	2020	Both
1	825	710	321	330	447	460	390	395	300	300	Low
2	775	800	402	470	360	420	345	480	360	450	Med
3	910	970	330	300	396	375	582	570	600	690	High
4	865	895	375	420	450	465	399	450	456	455	Med
Total	3375	3375	1428	1520	1653	1720	1716	1895	1716	1895	
	HBW Trip	Ends	Estimated	(2010)	Deviations	(E-0)/0	Forecast (2020)		Final	
	P(i)	A(j)	P(i)	A(j)	P(i) Error	A(j) Error	P(i)	A(j)	norm aA(j)	Prod	Attr
TAZ	2010	2010	2010	2010	2010	2010	2020	2020	2020	2020	2020
1	825	710	827.5	737.1	0.30	3.82	846.4	737.1	752.5	846	752
2	775	800	777.3	787.5	0.30	-1.56	950.5	863.1	881.1	951	881
3	910	970	913.0	989.1	0.33	1.97	870.9	1064.7	1086.9	871	1087
4	865	895	867.4	868.1	0.28	-3.00	938.1	867.3	885.4	938	885
Total	3375	3375	3385.2	3381.8	0.30	0.20	3605.9	3532.2	3605.85	3606	3606
	p(i) = 34.8	+ 0.59HH((i) + 0.80C(i) + 0.63W	(i)		a(j) = 485.	1+0.84*E(j)		

Problem 2. Trip Distribution: Calibration (20 pts)

By hand, calibrate a singly-constrained trip distribution model for the base year data. Show ALL calculations for three iterations. Does the model converge? Use 5-minute time categories and Attraction Factoring.

Table 2. Base Travel Time and Trip Distribution Matrix (2020)BASETravel TimesBASETrip InterchangesFrom\To 1 2 3 4From\To 1 2 3 4From\To 1 2 3 4

1	5	16	13	18	1	250	125	375	75	825
2	16	7	20	12	2	100	400	50	225	775
3	13	20	2	9	3	205	60	225	420	910
4	18	12	9	3	4	155	215	320	175	865
					A(j)	710	800	970	895	3375

Solution: The FHWA production-constrained gravity model is calibrated via the standard friction factor method. Table 2a below summarizes only the results of the estimated trip length frequency distribution at each interation. Attraction Factoring was performed at each iteration. A minimum of 3 iterations was required and the model did converge within 5 percent in 3 iterations (within 1 percent by the 5th iteration).

Table 2a. SCGM Friction Factor Calibration Iterations

k	Trave Time)D Pai in Ti			Ob	serve	ed	I	ter #	1	Iter	# 2	It	Iter # 3	
	nterv		Interv		-	Trips	(%)) Fk	()		k	(%)	Fk	(%) Fl	
1	0 -	5 1	1,33,	44		650	19.3	3 1.0	0 19	.7 0.	.98	19.1	0.99	19.	7 0.9	
2	6 - 1	0 2	22,34,	43		1140	33.8	3 1.00	0 20	.0 1.	.69	31.6	1.81	32.	3 1.8	
31	1 - 1	5 1	3,31,	24,42		1020	30.2	2 1.00	0 24	.9 1.	.22	31.3	1.17	30.	5 1.1	
4 1	6 - 2	0 1	2,21,	14,41	,23,32	565	16.7	7 1.00	0 35	.5 0.	.47	17.9	0.44	17.	6 0.4	
abl	e 2b.	SCGN	1 Cali		erged a on Iter		s Tri	ip Mat	rices	and Ac	ljuste	d Att	racto	rs		
abl				bratio	U	ation						ed Att 				
		 - Ite	er 1 -	bratio	on Iter	ation	 - Ite					- Ite			 Pi	
abl \j 1		 - Ite	er 1 -	bratio	on Iter	ation	 - Ite	er 2 -				- Ite	r 3 -		Pi 825	
\j 1 2	1 1 174 163	- Ite 2	er 1 - 3	bratio 4 219 205	on Iter i\j 1 2	ation 1 215 80	- Ite 2 116 324	er 2 3 364 110	4 130 261	i/j 1 2	1	Ite 2 118 363	r 3 - 3 323 91	4 116 231	825 775	
.\j 1 2 3	1 174 163 191	- Ite 2 195 184 216	er 1 - 3 237 223 261	bratio 4 219 205 242	on Iter i\j 1	ation 1 215 80 212	- Ite 2 116 324 93	2r 2	4 130 261 372	i/j 1 2 3	1 268 90 246	Ite 2 118 363 91	r 3 - 3 323 91 208	4 116 231 365	825 775 910	
\j 1 2	1 1 174 163	- Ite 2 195 184	er 1 - 3 237 223	bratio 4 219 205	on Iter i\j 1 2	ation 1 215 80	- Ite 2 116 324	er 2 3 364 110	4 130 261	i/j 1 2	1 268 90	Ite 2 118 363	r 3 - 3 323 91	4 116 231	825 775	
 1 2 3	1 174 163 191	- Ite 2 195 184 216	er 1 - 3 237 223 261	bratio 4 219 205 242	i\j 1 2 3	ation 1 215 80 212	- Ite 2 116 324 93 220	2r 2	4 130 261 372	i/j 1 2 3	1 268 90 246	Ite 2 118 363 91	r 3 - 3 323 91 208	4 116 231 365	825 775 910	

Problem 3. Trip Distribution: Application (10 points)

In response to identified problems in the base network and to anticipated traffic volumes from future growth, a network infrastructure project has been planned that would change base travel times between some zones. In general, infrastructure would be improved around Zone 1 (low income with little projected growth) while problems identified in Zone 4 would not be addressed.

Forecast the future total trip matrices using the trip generation forecast from Problem 1, the calibrated model from Problem 2, and the original (A0) and new (A1) skims given in Table 3. Utilize column/row factoring on the final trip table.

Table 3. Base and Future Transportation System Skims

BASE 2020	Tr	avel	Tim	es	FUTURE 2030 -	Travel Times						
	1	2	3	4		1	2	3	4			
1	5	16	13	18	1	6	14	11	14			
2	16	7	20	12	2	14	8	17	15			
3	13	20	2	9	3	11		3	11			
4	18	12	9	3	4	14	15	11	5			

Solution:

Forecasted P's and A's (balanced) are utilized, first, with existing skims (A0), and then with future skims (A1). Since travel times have changed for some zone pairs, associated friction factors will also change (e.g., trips from 1 to 2 used F4 in the base but F3 in the future). Forecast trip tables were Column & Row Factored. Note that column sums do not exactly match but are within one percent of the forecasted Trip Generation results. The spreadsheet output is provided for A0 and A1. Note the changes in the forecast P/A trip table for the two future scenarios.

> 0.971 1.004 0.986

A0. Future Ps and As with Base Skims

	A0 Analys				-											
	Travel Tin	ne Skim	s	T	Ē		Friction I	Factors		Ī		HBW P-	A Matrix			
TAZ	1	2	3	4		TAZ	1	2	3	4	TAZ	1	2	3	4	P(i)
1	5	16	13	18		1	0.96	0.42	1.16	0.42	1	224	115	392	115	846
2	16	7	20	12		2	0.42	1.89	0.42	1.16	2	87	457	125	282	951
3	13	20	2	9		3	1.16	0.42	0.96	1.89	3	192	81	230	368	871
4	18	12	9	3		4	0.42	1.16	1.89	0.96	4	70	226	454	188	938
											A(j)	573	879	1201	953	3606
											A(TG)	752	881	1087	885	
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(ij)		CF	1.3132	1.0018	0.9053	0.9285	
1	846	1	752	5	1	0.96	721.9	0.265	224							
		2	881	16	4	0.42	370.0	0.136	115			HBW P-		: Columr		
		3	1087	13	3	1.16	1260.9	0.463	392		TAZ	1	2	3		P(i)
		4	885	18	4	0.42	371.7	0.136	115		1	294	115	354	107	871
			3605				2724.6	1.000	846		2	114	458	113	262	946.95
											3	252	82	208	342	883.19
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(jj)		4	92	226	411	174	903.8
2	951	1	752	16	4	0.42	315.8	0.091	87		A(j)	752	881	1087	885	3605
		2	881	7	2	1.89	1665.1	0.481	457							
		3	1087	20	4	0.42	456.5	0.132	125			HBW P-	A Matrix	: Row Fa	actored	
		4	885	12	3	1.16	1026.6	0.296	282		TAZ	1	2	3		P(i)
			3605				3464.1	1.000	951		1	286	112	344	104	846
											2	114	460	114	263	951
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(ij)		3	249	80	205	337	871
3	871	1	752	13	3	1.16	872.3	0.220	192		4	95	235	427	181	938
		2	881	20	4	0.42	370.0	0.093	81		A(j)	744	887	1090	885	3606
		3	1087	2	1	0.96		0.264	230		CF	1.0107	0.993	0.997	1.000	
		4	885	9	2	1.89	1672.7	0.423	368		Dev(%)	-1.063	0.6911	0.2742	-0.009	
			3605				3958.5	1.000	871							
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(jj)							
4	938	1	752	18	4	0.42	315.8	0.074	70							
		2	881	12	3	1.16	1022.0	0.241	226							
		3	1087	9	2		2054.4	0.484	454							
		4	885	3	1	0.96	849.6	0.200	188							

4241.8 1.000 938

A1. Future Ps and As with Future Skims

3605

Δ1 Δnalvsis

CEE 123 Transportation Systems III: HW#7 Trip Distribution [S&M2] SOLUTIONS

HBW P-A Matrix

	AT Anar									
	Travel Ti	me Skim	s		[Friction	Factors		
TAZ	1	2	3	4		TAZ	1	2	3	4
1	6	14	11	14		1	1.89	1.16	1.16	1.16
2	14	8	17	15		2	1.16	1.89	0.42	1.16
3	11	17	3	11		3	1.16	0.42	0.96	1.16
4	14	15	11	5		4	1.16	1.16	1.16	0.96
					[
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(ij)	
1	846	1	752	6	2	1.89	1421.3	0.300	254	
		2	881	14	3	1.16	1022.0	0.216	183	
		3	1087	11	3	1.16	1260.9	0.267	225	
		4	885	14	3	1.16	1026.6	0.217	184	
			3605				4730.8	1.000	846	
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(jj)	
2	951	1	752	14	3	1.16	872.3	0.217	206	
		2	881	8	2	1.89	1665.1	0.414	394	
		3	1087	17	4	0.42	456.5	0.114	108	
		4	885	15	3	1.16	1026.6	0.255	243	
			3605				4020.6	1.000	951	
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(ij)	
3	871	1	752	11	3	1.16	872.3	0.263	229	
		2	881	17	4	0.42	370.0	0.112	97	
		3	1087	3	1	0.96	1043.5	0.315	274	
		4	885	11	3	1.16	1026.6	0.310	270	
			3605				3312.5	1.000	871	
i	P(i)	j	A(j)	t(ij)	k	F(ij)	A*F	Share	T(ij)	
4	938	1	752	14	3	1.16	872.3	0.218	204	
		2	881	15	3	1.16	1022.0	0.255	239	
		3	1087	11	3	1.16	1260.9	0.315	295	
		4	885	5	1	0.96	849.6	0.212	199	
			3605				4004.8	1.000	938	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TAZ	1	2	3	4	P(i)	
3 229 97 274 270 871 4 204 239 295 199 938 A(j) 894 913 903 895 3606 A(TG) 752 881 1087 885 3606 A(TG) 752 881 1087 885 3606 A(TAC) 752 881 1087 885 3606 TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81<0.986		254	183	225	184	846	
4 204 239 295 199 938 A(j) 894 913 903 895 3606 A(TG) 752 881 1087 885 CF 0.841 0.9647 1.2035 0.9884 TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92		206	394	108	243	951	
A(j) 894 913 903 895 3606 A(TG) 752 881 1087 885 GCF 0.841 0.9647 1.2035 0.9884 TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951	3	229	97	274	270	871	
A(TG) 752 881 1087 885 CF 0.841 0.9647 1.2035 0.9884 HBW P-A Matrix: Column Factored TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 88.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 </td <td>4</td> <td>204</td> <td>239</td> <td>295</td> <td>199</td> <td></td> <td></td>	4	204	239	295	199		
CF 0.841 0.9647 1.2035 0.9884 HBW P-A Matrix: Column Factored TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 HBW P-A Matrix: Row Factored TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1	A(j)	894	913	903	895	3606	
HBW P-A Matrix: Column Factored TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 88.81 0.986 4 172 231 355 197 1954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752	A(TG)	752	881	1087	885		
TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.9999 <td>CF</td> <td>0.841</td> <td>0.9647</td> <td>1.2035</td> <td>0.9884</td> <td></td> <td></td>	CF	0.841	0.9647	1.2035	0.9884		
TAZ 1 2 3 4 P(i) RF 1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.9999 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1 214 176 271 181 843 1.004 2 174 380 130 240 923.44 1.030 3 193 94 30 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 HBW P-A Matrix: Row Factored TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.998 0.993 1.006 0.999		HBW P-	A Matrix	: Colum	n Factore	ed	
2 174 380 130 240 923.44 1.030 3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 2 3 4 P(i) RF 1 2 3 4 P(i) RF 1 2 325 263 871 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.9999	TAZ	1	2	3	4	P(i)	RF
3 193 94 330 267 883.81 0.986 4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.9999	1	214	176	271	181	843	1.004
4 172 231 355 197 954.85 0.982 A(j) 752 881 1087 885 3605 HBW P-A Matrix: Row Factored TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999		174	380	130	240	923.44	1.030
A(j) 752 881 1087 885 3605 TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999	3	193	94	330	267	883.81	0.986
HBW P-A Matrix: Row Factored TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.9999	4		231	355	197	954.85	0.982
TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999	A(j)	752	881	1087	885	3605	
TAZ 1 2 3 4 P(i) RF 1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999							
1 215 177 272 182 846 1 2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999		HBW P-	A Matrix	: Row Fa			
2 179 391 134 247 951 1 3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999	TAZ	1	2			P(i)	RF
3 190 92 325 263 871 1 4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999			177				
4 169 227 349 193 938 1 A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999		179	391	134	247	951	1
A(j) 752 888 1081 885 3606 CF 0.9998 0.993 1.006 0.999	3	190	92	325	263	871	1
CF 0.9998 0.993 1.006 0.999	4	169	227	349	193	938	1
CF 0.9998 0.993 1.006 0.999	A(j)	752	888	1081	885	3606	
Dev(%) 0.0183 0.7436 _0.569 0.0556 <5%		0.9998	0.993	1.006	0.999		
Dev(/// 0.0103 0.1430 -0.303 0.0350 -0.336	Dev(%)	0.0183	0.7436	-0.569	0.0556		<5%

Comments: What changes can you notice? WHile it's easier to look for link volume changes after trip assignment is completed, you can notice differences in the two trip tables (for A0 and A1). From the skims, travel times to and from TAZ 1 have been reduced, while most times to and from TAZ 4 have deteriorated. The resulting A1 volumes, compared to A0 volumes, show decreases in intrazonal trips in TAZ 1 and 2, and increases in trips between TAZs 1 and 4. Demographic changes also come into play. What changes do you think multiply the impacts of travel time? A full analysis would \ compare both A0 and A1 to the base year, as well as A1 to A0.

Problem 4. Trip Distribution: Performance (10 points)

Summary statistics help describe the overall flow pattern at the end of trip distribution. Using skim tree times for the base and future networks, and the base and estimated future trip distribution matrices, compute the average trip travel times for 2020 and 2030. Tabulate total trips, total time, and average travel times for each year.

Solution:

Calculation Results: <u>results</u>. Summary results are provided in Table 4. In A0, average travel times increase, particularly for interzonal trips. In A1, the increase is somewhat less for interzonal but greater for intrazonal. The results vary geographically (see below).

Performance	BASE	A0	A1
Measure	(observed)	(est.)	(est.)
Total Trips	3375	3606	3606
- Interzonal	2325	2474	2482
- Intrazonal	1050 (31%)	1132 (31%)	1124
Total Travel Time	34445	37249	39030
- Interzonal	29420	31647	32670
- Intrazonal	5025	5602	6360
Average Travel Time	10.21	10.33	10.82
- Interzonal	12.65	12.79	13.17
- Intrazonal	4.79	4.95	5.66

Table 4. Summary Statistics for Base and Future Trips

Problem 5. Travel Surveys (20 points)

The <u>spreadsheet</u> provides 2020 household socio-economic and travel diary data for a sub-sample of Miasma Beach households. Use **households 4 through 6**.

 Calculate the trip travel time, activity duration, and trip purpose classification (HBW, HBO, or NHB) for each trip and append to the table. Compute the mean travel time by mode and mean activity duration by purpose. Submit a hardcopy (e-copy optional) of the updated spreadsheet.

SOLUTION: Calculation results.

Note: All times expressed as hours:minutes. Mean travel time was 12 minutes (9 min for 7 walk trips (19%); 10 min for 6 bike trips (16%); 25 minutes for 4 bus trips (11%); and 11 min for 20 car trips (54%)). Mean activity duration was 2:50, with 6:36 for work/school activities and 0:41 for non-work activities (durations not computed for return home trips). Note activity types do not follow the trip type classification (e.g., the first two work activities are actually at the end of, first, an HBW trip and, second, a NHB trip).

 Plot the travel patterns on a Miasma Beach network map. Label each trip end as a production (P) or attraction (A) and label the trip type (HBW, HBO, NHB). Use color and/or line types to distinguish individuals and/or trip types. You may need to plot households on separate maps.

Solution Map not shown in this solution key. Trips can be drawn as straight lines between the origin and destination centroids, and should be color-coded by trip type (e.g., HBW).

3. Calculate the associated OD trip table and the PA trip table.

Solution S'2025 (All trip types)

PA Table	1	2	3	4	5	6	Pi	C	D Table	1	2	3	4	5	6	Oi
	===	===	===	===	===	===	===	=		===	===	===	===	===	===	===
1	4	4	3	0	0	1	12		1	4	2	2	0	0	1	9
2	0	2	4	0	0	0	6		2	2	2	2	0	0	0	6
3	1	0	1	0	0	0	2		3	2	2	1	0	0	0	5
4	0	0	0	0	0	0	0		4	0	0	0	0	0	0	0
5	1	0	0	0	4	3	8		5	1	0	0	0	4	1	6
6	0	0	0	0	0	0	0		6	0	0	0	0	2	0	2
	===	===	===	===	===	===	===	=		===	===	===	===	===	===	===
Aj	6	6	8	0	4	4	28		Dj	9	6	5	0	6	2	28

If you've correctly plotted the Os and Ds in part (c), the total Os and Ds in each zone should match. Try to code each trip by Ps and As and you'll see that this will match the PA trip table.

Problem 6. Trip Distribution: Calibration Algorithm (5 points)

Provide the numbered algorithm steps (or flowchart) for calibrating a Single Constrained Gravity Model.

Last Updated: 6 June 2025